3.1941 \(\int \frac{1}{(d+e x)^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\)

Optimal. Leaf size=171 \[ \frac{16 c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{15 (d+e x) \left (c d^2-a e^2\right )^3}+\frac{8 c d \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{15 (d+e x)^2 \left (c d^2-a e^2\right )^2}+\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{5 (d+e x)^3 \left (c d^2-a e^2\right )} \]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(5*(c*d^2 - a*e^2)*(d + e*x)^3)
+ (8*c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*(c*d^2 - a*e^2)^2*(d +
 e*x)^2) + (16*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*(c*d^2 -
 a*e^2)^3*(d + e*x))

_______________________________________________________________________________________

Rubi [A]  time = 0.285568, antiderivative size = 171, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.054 \[ \frac{16 c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{15 (d+e x) \left (c d^2-a e^2\right )^3}+\frac{8 c d \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{15 (d+e x)^2 \left (c d^2-a e^2\right )^2}+\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{5 (d+e x)^3 \left (c d^2-a e^2\right )} \]

Antiderivative was successfully verified.

[In]  Int[1/((d + e*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(5*(c*d^2 - a*e^2)*(d + e*x)^3)
+ (8*c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*(c*d^2 - a*e^2)^2*(d +
 e*x)^2) + (16*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*(c*d^2 -
 a*e^2)^3*(d + e*x))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 55.212, size = 158, normalized size = 0.92 \[ - \frac{16 c^{2} d^{2} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{15 \left (d + e x\right ) \left (a e^{2} - c d^{2}\right )^{3}} + \frac{8 c d \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{15 \left (d + e x\right )^{2} \left (a e^{2} - c d^{2}\right )^{2}} - \frac{2 \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{5 \left (d + e x\right )^{3} \left (a e^{2} - c d^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(e*x+d)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

-16*c**2*d**2*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(15*(d + e*x)*(a*e*
*2 - c*d**2)**3) + 8*c*d*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(15*(d +
 e*x)**2*(a*e**2 - c*d**2)**2) - 2*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)
)/(5*(d + e*x)**3*(a*e**2 - c*d**2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.148265, size = 94, normalized size = 0.55 \[ \frac{2 \sqrt{(d+e x) (a e+c d x)} \left (3 a^2 e^4-2 a c d e^2 (5 d+2 e x)+c^2 d^2 \left (15 d^2+20 d e x+8 e^2 x^2\right )\right )}{15 (d+e x)^3 \left (c d^2-a e^2\right )^3} \]

Antiderivative was successfully verified.

[In]  Integrate[1/((d + e*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(3*a^2*e^4 - 2*a*c*d*e^2*(5*d + 2*e*x) + c^2*d^
2*(15*d^2 + 20*d*e*x + 8*e^2*x^2)))/(15*(c*d^2 - a*e^2)^3*(d + e*x)^3)

_______________________________________________________________________________________

Maple [A]  time = 0.013, size = 146, normalized size = 0.9 \[ -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 8\,{x}^{2}{c}^{2}{d}^{2}{e}^{2}-4\,xacd{e}^{3}+20\,x{c}^{2}{d}^{3}e+3\,{a}^{2}{e}^{4}-10\,ac{d}^{2}{e}^{2}+15\,{c}^{2}{d}^{4} \right ) }{15\, \left ({a}^{3}{e}^{6}-3\,{a}^{2}c{d}^{2}{e}^{4}+3\,{c}^{2}{d}^{4}a{e}^{2}-{c}^{3}{d}^{6} \right ) \left ( ex+d \right ) ^{2}}{\frac{1}{\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+aed}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(e*x+d)^3/(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

-2/15*(c*d*x+a*e)*(8*c^2*d^2*e^2*x^2-4*a*c*d*e^3*x+20*c^2*d^3*e*x+3*a^2*e^4-10*a
*c*d^2*e^2+15*c^2*d^4)/(e*x+d)^2/(a^3*e^6-3*a^2*c*d^2*e^4+3*a*c^2*d^4*e^2-c^3*d^
6)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d)^3),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.475873, size = 377, normalized size = 2.2 \[ \frac{2 \,{\left (8 \, c^{2} d^{2} e^{2} x^{2} + 15 \, c^{2} d^{4} - 10 \, a c d^{2} e^{2} + 3 \, a^{2} e^{4} + 4 \,{\left (5 \, c^{2} d^{3} e - a c d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{15 \,{\left (c^{3} d^{9} - 3 \, a c^{2} d^{7} e^{2} + 3 \, a^{2} c d^{5} e^{4} - a^{3} d^{3} e^{6} +{\left (c^{3} d^{6} e^{3} - 3 \, a c^{2} d^{4} e^{5} + 3 \, a^{2} c d^{2} e^{7} - a^{3} e^{9}\right )} x^{3} + 3 \,{\left (c^{3} d^{7} e^{2} - 3 \, a c^{2} d^{5} e^{4} + 3 \, a^{2} c d^{3} e^{6} - a^{3} d e^{8}\right )} x^{2} + 3 \,{\left (c^{3} d^{8} e - 3 \, a c^{2} d^{6} e^{3} + 3 \, a^{2} c d^{4} e^{5} - a^{3} d^{2} e^{7}\right )} x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d)^3),x, algorithm="fricas")

[Out]

2/15*(8*c^2*d^2*e^2*x^2 + 15*c^2*d^4 - 10*a*c*d^2*e^2 + 3*a^2*e^4 + 4*(5*c^2*d^3
*e - a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(c^3*d^9 - 3*a*c^
2*d^7*e^2 + 3*a^2*c*d^5*e^4 - a^3*d^3*e^6 + (c^3*d^6*e^3 - 3*a*c^2*d^4*e^5 + 3*a
^2*c*d^2*e^7 - a^3*e^9)*x^3 + 3*(c^3*d^7*e^2 - 3*a*c^2*d^5*e^4 + 3*a^2*c*d^3*e^6
 - a^3*d*e^8)*x^2 + 3*(c^3*d^8*e - 3*a*c^2*d^6*e^3 + 3*a^2*c*d^4*e^5 - a^3*d^2*e
^7)*x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(e*x+d)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)**3), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.280133, size = 1, normalized size = 0.01 \[ \mathit{Done} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d)^3),x, algorithm="giac")

[Out]

Done